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Solid solubility of silicon and germanium in 
aluminium under pressure 
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The solid solubility of silicon and germanium in aluminium under pressure are investigated 
using the microscopic electronic theory based on pseudopotentials and using the virtual 
crystal approximation. Obtained results for the lattice constant and the solid solubility under 
pressure in the AI-Si and AI-Ge systems are in good agreement with the few available 
experimental data, in spite of our not introducing any adjustable parameter except for the 
lattice constant of pure aluminium crystal. The heat of solution and the pressure-volume 
relation in the AI-Si and AI-Ge systems are presented theoretically. 

1. Introduct ion  
The increase of the solid solubility in alloy systems 
under pressure is an interesting subject in materials 
science and technology. Experimentally, a substantial 
increase in the solubility of silicon and germanium in 
aluminium has been observed [1-3] under pressure by 
rapid quenching from the liquid state. It is noticeable 
that the extension of the silicon and germanium 
solubility in aluminium produces a drastic increase in 
the superconducting transition temperature [3]. How- 
ever, a theoretical study from first principles to estimate 
quantitatively the solid solubility under pressure and 
the bulk properties of the A1-Si and AI--Ge systems, 
has not been reported. In the present work, we apply 
microscopic electronic theory based on pseudo- 
potentials to the A1-Si and A1-Ge systems. The 
pseudopotential method has initially been derived from 
the OPW formalism, and it has been widely used for 
calculations of different properties of metals and 
alloys. The second-order perturbation theory using 
rather weak model pseudopotentials has been suc- 
ceeded in elucidating the metallic bonding. We have 
proposed [4] a local Heine-Abarenkov model pseudo- 
potential for pure aluminium crystal, and obtained a 
cohesive energy and an equation of state in good 
agreement with the experimental data. Previously, we 
have reported [5] the corresponding model pseudo- 
potential for solute silicon and germanium with the 
diamond structure. The AI-Si and A1-Ge system has 
an fcc  phase when the solid solution is formed. 
Therefore, we consider that the crystal binding of 
AI-Si or AI-Ge is unchanged compared with that of 
pure aluminium. The main problem remains to deter- 
mine both the atomic configuration and the pseudo- 
potential in the solid solution. We employed models of 
a completely disordered alloy for the solid solution 
AI~ xSi~ or All xGG with arbitrary atomic concen- 
tration, x. Then, using only the pseudopotentials in 
aluminium, silicon and germanium, we formulated the 
electronic model for AI-Si and AI-Ge solid solutions 

in virtual crystal approximation (VCA). Finally, we 
investigated quantitatively the bulk properties of 
these systems such as the lattice parameter, heat of 
solution, Helmholtz free energy, solid solubility and 
the pressure-volume relation. 

2. Formula t ions  
In VCA, the disordered alloy is replaced by a mon- 
atomic periodic lattice composed of the average 
atomic potential. In the case of All xSix or Alj xGe,, 
using the local Heine-Abarenkov model potential 
[4, 5], the average bare potential form factor with 
wave number q, vbVCA(q) is given by 

VbVCa(q) = (1 -- X) VbA'(q) + xVbSi~ (1) 

and 

Vb' (q) 
47zZ i e 2 

f~q2 

(1 + ui) cos (qRiM) ui sin (qR~,) ] 
qR'M J 

(2) 

where Zi, R~ and u i (i = A1, Si or Ge) are valency, 
ionic core radius and potential depth for aluminium, 
silicon or germanium. Then, f~, the atomic volume 
related to average valency Z = (1 - x)Z A~ + 
xZ si~ lattice constant a in the fcc  phase and 
interelectronic distance G, is given by 

a 3 4rcr2 
f~ - 4 - Z T (3) 

In the framework of the usual second-order per- 
turbation based on pseudopotentials, the total energy 
per atom, EVCA(~-'2, X), in the AI~_,Si,. or AI~_,Ge, 
alloy system is obtained in VCA by extending from 
pure metallic crystal [4] and given by 

EVCA(~, X) = Ei(~ , x) q- E(~ L x) 

+ E(')(fL x) + E(2)(fl, x) (4) 
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where Ei is the Madelung energy, i.e. the total 
Coulomb energy of positively charged ions in a uni- 
formly negatively charged background, and given by 

o~ZS/3 
Ei(n , x) - (5) 

r s 

where c~ is the Madelung constant equal to 1.79175 for 
the fc c phase. E (~ is the energy of the free electron gas 
consisting of the kinetic, exchange and correlation 
energies and given by 

( 2.21 0.916 ) 
E(~ = Z \  r~ r, + E~o~_ (6) 

E (~ is the first order perturbation energy in terms of 
pseudopotentials, and in our model with the local 
Heine-Abarenkov potential it becomes 

2gZe 2 
2 .  AI~ E~ x) - f~ [(! ~ x ) Z A l ( R ~ ) 2 ( 1  + ~ u  ) 

,~ si or Ge ," r.Si or Ge ",2 1 �9 2 Sior Ge 
+ X L ,  t /~M ) ~,1 -t- ] 'b/ )]  

(7) 

E (2) is the second-order term usually called the band- 
structure energy, and is given by 

E(2'(fL x) = a ~bVCA(G) 2 
2 a~o e(G) 

Zo(G) 
x 1 - 4ge2f(G)Zo(G)/G 2 (8) 

where G is the reciprocal lattice vector of the f cc  
lattice. In estimating Equation 8, the electronic die- 
lectric function e(q) and the factorf (q)  including the 
electronic exchange and correlation effects are import- 
ant, and are given by 

4roe2 Zo ( q ) 
e(q) = 1 + q2 1 -  4rw2f(q))~o(q)/q 2 (9) 

and 

Zo(q) 
kF I 1 - -  (q/2kv)21n l + q/2kv 1 

= ~ 1 + q/kv 1 --  q/2kF 

(lO) 

where kv is the Fermi wave number. In the present 
work, we adopt the following three approximations of 
the exchange correctionf(q) to the dielectric screening 
function e(q). First, the modified Hubbard type [6] 
f ( q )  = q2/2(q2 +'~k2), and second, the Kleinman- 
Langreth type [7, 8] f ( q )  = qZ/4(q2 + ~k2v) + q2/ 
4r 2, where the parameter ~ is obtained from the 
compressibility sum rule of an electron gas with the 
Nozi6res-Pines formula [9] for the correlation energy, 
Ecorr. Third, the Vashishta-Singwi type [10], f ( q )  = 
A{1 - exp [-B(q/kv)2]}. These three different forms 
produce the variations in the obtained results corre- 
sponding to calculated accuracy. 

The equilibrium volume QoVCA(x) with fixed atomic 
fraction x is determined by satisfying the zero- 
pressure condition given by 

dEVCA(f2'ds x ) x  = 0 (11) 
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The equilibrium lattice constant, a vCA ( x ) ,  is converted 
from f~VCA (X) using Equation 3. Then, the pressure, P, 
is obtained from the first derivative of the crystal 
energy, E vcA, with respect to the crystal volume, f2, 
and given by 

P(x)  - dEVCA(~'df~ x) nVCA(x) (12) 

In treating the solid solubility in the alloy system, 
the estimation of the heat of solution, AE(x), is 
essential. The heat of solution, AE(x), for All xSix or 
Al~_xGe x is defined as the energy difference between 
the solid solution EVCA[f~0VCA(x) ,  X] and the phase 
mixture Emix (x) given by 

AE(x) = Evca[f~0vCA(x), x] -- Emix(X ) (13) 

and 
E m i x ( X  ) - -  (1 - x)EAI(~"~0AI , X = 0 )  

+ x E S i ~ 1 7 6  , X = 1)  (14) 

The pressure effect on the heat of solution, AE(x ,  P), 
is obtained using Equation 12, namely the pressure, 
P-volume relation f~VCA(x), and given by 

AE(x ,  P) = E V C A ( x ,  P) - Emix(X , /9) (15) 

and 
Emi• P) = (1 - x)EAI(x = 01 P) 

-I- xESi~ = 1, P) (16) 

The Helmholtz free energy, F~(x, P, T), for the solid 
solution under pressure, P, at the temperature, T(K), 
is given by 

Fs(x, P, T)  = E(x ,  P, T)  

+ kT[(1 - x) In (1 - x) + x ln  (x)] 

(17) 

In the following section, we treat the Helmholtz free 
energy of formation, F~' (x, P, T), for the solid solution 
under pressure, given by 

F~'(x, P, T) = Fs(x, P, T) - Emix(X , P, T) 

= AE(x,  P) + kT[(1 - x) 

x In(1 - x) + x l n ( x ) ]  (18) 

where the vibrational contribution to the internal 
energy and the thermal entropy were assumed to be 
independent of the alloy composition. The behaviour 
of F~' (x, P, T) against x with fixed P and T(K) deter- 
mines the solubility limit. 

3. Numerical  resuls and discussion 
First, the variation of the equilibrium lattice constant 
avCA(x) of the A11 _xSix and A11 zGe~ systems with x, 
obtained from Equations 3 and 11 is shown in Figs 1 a 
and b, where the results with the Vashishta-Singwi 
screening function are given below. The results for 
other screening functions are almost the same, and the 
maximum deviation of a vcA in Fig. 1 is about 
_+ 0.0001 nm at x = 0.5. The experimental error in the 
lattice constant over the region o fx  ~< 0.2 amounts to 
+_ 0.0003 nm for these alloy systems [1-3]. The equi- 
librium lattice constants a v c A  ( x )  obtained here deviate 
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Figure 1 The variation of equilibrium lattice constant aVCA(x) with x for (a) Al~_~Six, and (b) A11 .~Ge x systems. (o)  [1] and (o)  [3] observed 
data, ( - - - )  Vegard's law. 

from that according to Vegard's law (as shown by the 
broken lines in Fig. 1), and the slope Aa/(aAx) below 
x = 0.2 is - 0 . 0 4 0  for Al~_.ySix and 0.031 for the 
All xGe.,, system. The experimental slope Aa/(aAx) 
for Al~_xSix alloy was -0 .038  [1] and -0 .042  [3], and 
that for A1]_xGe x = 0.042 [3]. Our obtained data of 
lattice constants are consistent with the observed data 
for All_xSix, and those for AI~ ,.Ge~ show a some- 
what smaller increase with atomic fraction, x, than the 
observed data. 

Next, we calculated the crystal energy in VCA, 
EVCA(x,  P), of the hypothetical A11 .,Si x and AI]_,.- 
Gex solid solution under the corresponding pressure, 
P, and found the heat of solution, AE(x, P), of the 
AI~ xSi x and A1 l_xGe~ systems under pressure P = O, 
3, 5 and 10GPa, to be as shown in Figs 2a and b. 
From Fig. 2, we see that the heat of solution for the 
A11 .,.Si x and AI~_~Ge,. systems has a maximum near 
x = 0.6 and decreases as the crystal became more 
compressed. This tendency of AE(x, P) is closely 
related to the formation of the solid solution over 
the aluminium-rich region under pressure. The ratio 
AE(x, P)/[x(1 - x)] at P = 0, 3, 5 and 10 GPa for the 
Alj _xSix and AI~ _xGex systems is shown in Figs 3a and 
b, where AE(x, P)/[x(1 - x)] deviates largely from 

the linear dependence with the atomic fraction x. In 
the quasi-chemical model of binary alloys A~ _xB x [11], 
using three independent A-A, B-B and A-B bonds, 
the ratio AE(x)/[x(l - x)] is constant. However, this 
model is applicable only to alloy systems composed of 
metals with approximately equal atomic size, and not 
to the AI-Si or AI-Ge systems. The maximum devi- 
ation of our resultant data in Figs 2 and 3 remains at 
about _+0.1mRy (1 Ry = 2.17972 x 10 ~sj) at 
x = 0.6. 

Thirdly, using numerical data in Fig. 2, we show the 
results obtained for Fs'(X, P, T = 700K) for the 
Al~_~Six system under pressure P = 0, 3, 5 and 
10 GPa in Fig. 4a, and for F~'(x, P, T = 600 K) for the 
All_,.Gex system in Fig. 4b. In Fig. 4, the point on the 
tangent of F((x, P, T) drawn through the point 
(x = 1, F s' = 0) denotes the determined phase 
boundaries between the solid solution and the phase 
mixture under the corresponding pressure, P, and at 
the characteristic temperature T(K). From Fig. 4, we 
see that the solid solution is not formed under atmos- 
pheric pressure (P = 0GPa)  at T = 700K for the 
AI~_,.Si,. system and at T = 600 K for the All_.,Ge,. 
system. From similar analysis of Fs'(x, P, T) at dif- 
ferent temperatures from that in Fig. 4, the solubility 
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Figure 2 The heat of solution AE(x, P) plotted against x under pressure P = 0, 3, 5 and 10GPa for (a) A11 .,.Si,, and (b) All_,Ge,. systems. 
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Figure 3 The ratio of  the heat of  solution AE(x, P)/[x(l - x)] plotted against x, under pressures P = 0, 3, 5 and 10GPa for (a) A11 xSi,. 
and (b) Alt_,.Ge ,. systems. 

limit of the Al~_,.Si,. and Al~_,.Ge.,. systems under 
P = 0, 3, 5 and 10 GPa may be calculated; see Figs 5a 
and b. From Fig. 5, we predict that extended solid 
solutions may be formed under pressure in A1-Si and 
AI-Ge systems. In estimating the melting curve, it is 
necessary to know the Holmholtz free energy of for- 
mation F((x, P, T) for the liquid phase. An increase 
in the melting point of pure aluminium under pressure 
has been reported [13], but, because of lack of infor- 
mation on the liquid phase of the AI~_,.Si,. and 
AI~ ,.Ge,. systems, it is not possible to treat the phase 
boundary between the solid and the liquid for these 
systems. Our resultant phase boundaries in Fig. 5 have 
a calculated accuracy corresponding to ]Axl~<0.0i 
and lATIn< 5K. 

Lastly, the numerical data of the pressure-volume 
relation for the A10.85Si0.~5 and A1085Ge0 ~5 systems are 
shown representatively in Figs 6a and b. The maxi- 
mum deviation of pressure P in Fig. 6 is about 
+_0.1 GPa at ~/s = 0.9, and comparable to the 
experimental error. At the finite temperature T, the 
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thermal pressure, AP, is also considered. This effect is 
estimated using the Mie-Gr/ineisen equation of state 
and given [14] by AP = 3kTTD(O/T)/D where 7, 0 and 
D (0/T) are the Gr/ineisen parameter, Debye tempera- 
ture and Debye function, respectively. At high tem- 
peratures, the influence of the thermal pressure, AP, is 
not negligible, and the reformulation of the volume 
scale is necessary when considering the thermal pres- 
sure. The quantitative influence of the thermal pres- 
sure on the equation of state for pure aluminium 
amounts to about 0.1 GPa at T = 933.4K (melting 
point under atmospheric pressure) and at the com- 
pressed volume D/fl0 = 0.9. From Fig. 6a, we see 
that our resultant data of equation of state for the 
A10.85Si0.15 system are in good agreement with the 
available experimental data [2]. 

4. C o n c l u s i o n s  
The solubility limit of silicon and germanium in 
aluminium was studied under pressure using the 
microscopic electronic theory based on pseudo- 

m 
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Figure 4 The Helmholtz free energy of formation (a) s P, T = 700K) plotted against x for the Al~_~Six, system and (b) Fs'(x, P, T = 
600K) plotted against x for the AI~_,.Ge,. system, under pressure P = 0, 3, 5 and 10GPa. 
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Figure 5 The resultant phase boundaries between solid solution (SS) and phase mixture (PM) under pressure P = 0, 3, 5 and 10 GPa for 
(a) Al I x Si,. and (b) Alt _~Ge.,. systems. P = ( - - - )  0 GPa [12], ( - - . - - )  2.8 GPa [1] and (o) 5.4 GPa [1]. ( I ) ,  ( t )  and (x) solid solution with 
f cc  phase [3] obtained experimentally at P = 4.5, 7.0 and 9.0 GPa respectively. 
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l")gure 6 Pressure-volume relation for (a) A1ossSi0.15 and (b) A108~Geo.i5 systems. (o) Experimental data [2]�9 

potentials and virtual crystal approximation. The bulk 
properties and the solid solubility of the AI-Si and 
AI-Ge systems obtained from first principles are con- 
sistent with experimental data. Our treatment is useful 
in studying the mechanical properties, such as elastic 
moduli, etc., and the thermal properties, such as 
specific heat, etc., of these alloy systems. 
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